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1. INTRODUCTION 

In the area of signal processing, a model that is often used involves 

expressing the observation vector a. the sum of noise vector and vector of 

linear combinations of the (random) signal vector. The noise vector and 

signal vectors are usually assumed to be distributed independently as normal 

with zero mean vectors. When the noise is white, the problem of detection of 

the number of signals transmitted is related to finding the multiplicity of 

the smallest eigenvalue of the covariance matrix of the observation vector. 

So, eigenvalue methods play an important role in signal processing. These 

methods play a dominant role in the area of multivariate statistical analysis. 

Some workers (e.g., see Kumaresan and Tufts(1980), Liggett(1973), Schmidt(1979). 

Tufts, Kirsteins and Kurmaresan(1983), Wax and Kailath(1984)) in signal processing 

have used the eigenvalue methods. 

Recently, eigenvalue methods involving information theoretic criteria are 

used by Wax and Kailath (1984) and Zhao, Krishnaiah and Bai (1985) for deter- 

mination of the number of signals in presence of white noise. The object of 

this paper is to detect the number of signals present in presence of colored 

noise. This problem is equivalent to the problem of studying the rank of r when 

^2 = T^ + AS^, A is a known or unknown scalar, }:^  and }:^  are pxp covariance matrices 

and r is nonnegative definite matrix of unknown rank q < p. This problem arises 

in other areas like one-way multivariate components of variance model and factor 

analysis. Now, let n^S^ and n2S2 be distributed independently as central Wishart 

matrices with n^ and n2 degrees of freedom and E(S.) = i.,(i=l,2). Rao (1983) 

derived the likelihood ratio test (LRT) statistic for the rank of r when A is 

unknown. He also derived a modified LRT statistic for the rank of r when A is 



known. The main contribution of our paper is to propose certain information 

theoretic criteria for detection of the number of signals and establish the 

property of strong consistency. The paper is organized as follows. 

In Section 2 of the paper, we discuss the model considered in the case of 

colored noise.  In Section 3, we discuss the LRT and other test procedures for 

testing the hypothesis that the last few eigenvalues of i^^'.    are equal to A for 

the cases when x  is known and unknown. We propose certain information theoretic 

criteria in Section 4 for detection of the number of signals when A is known as 

well as when it is unknown and establish  the strong consistency of these 

procedures. Some alternative information theoretic criteria are also mentioned. 

In Section 5, we discuss  the applications of the above results to determine 

the rank of the covariance matrix of random effects vector under multivariate 

one-way classification model. The results in Sections 3-5 are discussed when 

the first q eigenvalues Ap...,A of E^z" are simple (distinct). When these 

eigenvalues have multiplicities (that is, they are equal in groups), the situation 

becomes complicated. In this case, the problem invlolves not only estimation 

of q but also the multiplicities of the first q eigenvalues. This problem is 

investigated in Section 6. 



2. A MODEL IN SIGNAL PROCESSING 

In the area of signal processing, the following model is used: 

.  x(t) = As(t) + An(t) (2.1) 

where x(t): pxl is the observation vector, A = [A($^),... ,A(o )], s'(t)-(s^(t) 

...,s (t)), s^.(t) is a complex waveform which is referred to as i-th signal, 

A(*^) is pxl complex vector which depends upon the vector $. of unknown 

parameters associated with i-th signal, n(t) is a complex vector associated 

with the noise and A is known or unknown scalar. We assume that s(t) and 

n(t) are distributed independently as complex multivariate normal with 

covariance matrices >^ and ):^  respectively,    E(s(t))= 0, and E(n(t))=0. Also, 

A denotes the complex conjugate of A and A denotes the transpose of A. The 

number of signals, q, transmitted is equal to the rank of AH-A*. If \,>...>\ 
1-  -p 

denote the eigenvalues of x^y     , q is given by 

h > ... 1\  >  Aq^i . ... . Ap = A (2.1) 

since r.^ =  A>FA + \i^.  When z^ = /l,  the problem of determination of the 

number of signals was considered in the literature. Wax and Kailath (1985) 

used Akaike's IAIC criterion and the minimum discription length (fiDL) criterion 
9 

due to Rissanen and Schwartz when o is unknown, X=l and the underlying distribution 

is complex multivariate normal. Zhao, Krishnaiah and Bai (1985) considered an 

alternative criterion and established its strong consistency for the cases 
2 

when o is known and unknown when the underlying distribution is complex 

multivariate normal. They have also considered certain cases when the under- 

lying distribution is not necessarily complex multivariate normal. But, 



it is not realistic to assume always that the noise is white. We assume 

that the covariance matrix T.^  of n(t) is arbitrary and an independent estimate 

Sj of Y.^     is available from a different data set. Also, we assume that n 

independent observations x(tp ,... ,x(tJ are available on x(t). In this case, 

"2 
we can estimate ^^  with S2 where n^S = J x(t )x*(t.). Since S, and S, are 

distributed independently as complex Wishart matrices with n^ and n^  degrees 

of freedom respectively, E(S^) = z^  and £(82) = z^  =  ATA* + E^ , the methods 

developed in this paper are useful in finding the number of signals transmitted, 

We will develop the methodology for finding q such that x, >   > A 
1 - ••• -    q 

^ \+l " ••'  " ^p " ^ where A^ >  ...  > Ap are the eigenvalues of 12^1^ "iSi 

and n2S2 are distributed independently as  real  central   Wishart matrices with 

n^ and n2 degrees of freedom, E(S.) = E.(i:=l,2), and z^ - AM'  + Az^when A 

is a real  scalar.    Here A:  pxq is a real  unknown matrix,  v: qxq is a real, 

positive definite matrix.    The above methodology needs only trivial  modifica- 

tion when n^Sj  and n2S2 are complex Wishart matirces. 



3. TESTS FOR THE EQUALITY OF THE LAST FEW EIGENVALUES OF ):2>:"^ 

Let n^S^ and n^S^ be distributed independently as central Wishart 

matrices with n^ and n^ degrees of freedom respectively, E(S,) = E, , 

E{S^) = 7.^  and i^  - Aij^A' + \T,^.    The log likelihood function L(e) is given 

by 

2L(o) = - n^logl?:^! - n2log|)::2| - n^tri^^S^ - n^trz^^S^.   (3.1) 

Let H|^: A^ ^ ... ^ AJ^ > \^_^^  = ... = A = 1. We first calculate sup L(e) where 

k 

0|^ is the paramteric space under H^^. Let the eigenvalues of S2S"^ be 5^ > 

... > 6p. With probability one we have 6^ > 62 > ... > 6 > 0. We know that 

there exists two nonsingular matrices R and R such that 

i-^  - RR',  Z2 = R'^R' (3.2) 

S^ = RR' ,  $2 - RAR ', 

where A  = diag(A^,... ,Ap)  and A = diag(6^ ,...,6  ).    Let R"^R = V   . Then 

2L(o)  = -  (n^+n2)log|RR'|   -  n2l og(A j... Ap)  + L^(V,A), (3.3) 

where      '  r 

4(VM)=  (n^+n2)logIV'V|   - n^trV'V -  n2tr(A"^VAV). (3.4) 

First we fix A = diag(A^,..,,A ) and compute Sup^.L^(V ,A). If we take partial 

derivative of L with respect to V , we obtain the following optimizing equations; 

2(n^+n2)V"^ - 2n^V' - 2n2AV'A'^= 0 

i.e., 

a^V'V + 3^/.V'A~^= Ip, (3.5) 



where I is the pxp identity matrix, and 

"n "" "l^"' ^n " "^Z^"^' " " "i + "2" ^"^"^^ 

From (3.5) it follows that AVA'^V is symmetric and hence AV'A"^V=V'A~^VA. Sine 

\ " '^2 "  ■•'  ^ % ^ ^'  AV'A-^v is diagonal so that by (3.5) VV is dianonal. 

Thus there is an orthogonal matrix Q and a diagonal matrix D - diagfd    d 1 

^1 - ^2 i ••• i dp > 0 such that V - QD. Since A and AVA'^V are dianonal, 

AVA-lv =: A^VA-IVA* . A4DQ'A-V- SO that Q'A-1Q is also diagonal and the 

diagonal elements are the same as those of A'^ Again by (3.5) we know that 

the diagonal elements are arranged according to the increasing order. Hence 

O'A 0 = A  or equivalently. 

I ■ . 

Substituting this into (3.5) we find 

I  = aV'V + 3 AV'A"^V =  a V'V + p VA"^VA 

- a^VV + B^DO'A"^QDA = a^V'V + 3^DQ'QDA"^A 

= VV(a^I + 3^A-lA) (3.8) 
and 

V'V| - la I + 3 A' 1.1-1-  P      1 
n^ ^ V 'M  = .11  -rr- • (3.9) 

l=l(a^+3^A. 6.) 

Also, we have by (3.5) 

- n^trVV - n2tr(-V'A-lv) = - (n^+n2)p. (3.10) 

By (3.4), (3.9) and (3.10) 

Sup^L^(V',A)= {n^^n^)i-hoq{a^n^x-.h.)  -  p) (3.11) 

So, 



Sup 2L(o)  = Sup      nl-loglRR'l  - 3„log(A,...A, ) - p 
efcOj^ X >_. ..>A. >1 "    ■    i       k 

p k (3.12) 

where 0|^ denotes the parametric space when H.   is true.    Let x = #{i £ p:  (S.  > 1}. 

Also,  let d = niin{k,T}, and set 

d 
^1 = n_^ {-log(a^+6^A:  6.)  -  3^1ogX.} 

'^\ (3.13) 

^ 1 
<j.p - n    ^    {-log(a +3 A    6  )  -  3„logA.}. 
c ^^jj^j n    n 1     1 n        i 

We note that 6^ > 6^ > ... > 6 , > 1, and Sup      <i,^  can be reached at A. = &., 
. A^>...>A^>1 1   .   .       '        ' 

for i=l,...,d. For i=^d+l,... ,k, fi^. < 1 and A^ > 1, we see that the function 

f^-CA.) = - ■'og(a^+3^A:^6.) - 3jogA. (3.14) 

has negative derivative, and f^-(A^.) is decreasing and continuous. Thus 

Sup f (A.) - f (1), i=d+l,...,k. 
A.>1 ^ ^    ^ 

From the above discussion, we have 

Sup    (j), = - na    I  logs., 
v^>...>A^>l ^     "i=l   ^ 

(3.15) 

and 

Sup      <t>Q = - n  y log(a +3„6.). (3.16) 
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From (3.12),(3.13)-(3.15),  it follows that 

P 
Sup 2L(fl)  = - n{log|RR'I   + p + B    I 1og6.} 
e£0|^ "i=l    "  '• 

P 
- ^    I ,       J^og(a +B 6  )  -  6 log6 ] 

= - n^log|Sj   - n2loglS2|   - np ^^ 17) 

- ^ I ,      ,nog(a +B 6.) - e„1og6.] . ^ 

So, the LRT statistic for testing the hypothesis H, against the alternative 

that the rank is more than k is given by 

"  i=l+min(k,T) n n 1    1 

Th e LRT statistic for testing H. against H. (I<<t) is given by 

min(t,T)       _ , ng /2 
L  =    II     («n+f^n^i)   ^- (3-19) 
^^  i=l+min(k,T) n n 1    1 

if k < T. If k >^ T, then L,  = 1. 

Rao (1983) considered the problem of testing the hypothesis that the 

rank of r is k against the alternative that it is greater than k when ir, = 

r + AZ^ and r is nonnegative definite for the cases when x ^ 1 and when X is 

unknown. He proposed a modified LRT procedure and the LRT procedure for testing 

the hypothesis on the rank of r according as A = 1 and A is unknown. 

When A is unknown, let H, denote the hypothesis that 



for k - 0,l,..,,(p-l). Let M^  denote the model for which H* is true. It is 

known (see Rao(1983)) that the supremum of the logarithm of the likelihood 

* 
function under H. is given by 

2 loglSj --^logls^l -M 

P 
^ ^ i4+i^"n^°9'ku-'^n^°96j - log(a^A\^ +3^6^.)] (3.20) 

where x^^.  satisfies the equation 

P      6. 

P-k = . l^ —^  (3.21) 

or equivalently. 

j = k+l a A. +e 6. 
n ko ^n j 

P       A, 

P-k - I .  ^°  • (3.22) 
^-^'^    "n^ko^^^j 

As pointed out in Rao (1983), the logarithm of the likelihood ratio statistic 

is given by 

*      P 
- 21og L, = log_jT^^[((n26..n,A,^)/n)" -^- (3.23) 

5 . A, 
1  ko 

which is distributed as chi-square with [(p-k)(p-k+l)-2]/2 degrees of freedom 

as n^ and n^  tend to infinity. 

We will propose the following alternative procedures for testing the 

hypothesis Hj^ against the alternative that \^_^_^  > 1. We accept or reject H. 

against A.^, > 1 according as . 
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gU|,+l....,^p) > c^ (3.24) 

where 

,  P[g(^k+l"-"^p) -^al'^k^ '-  ^1-")- (3.25) 

For example, 9(^^+1 "••'^p) "^^^ ^e t^^^  or £^^^+ ... + l^.    The exact 

distributions of the above statistics are complicated. Also, they involve 

nuisance parameters unless k = 0. But, the joint asymptotic distribution of 

'^k+1""''^p' ■'s g^ven fn a companion paper (in preparation) by the authors 

for the real and complex cases. A review of other asymptotic results was 

given in Murihead (1978). We can use the above result to obtain asymptotic 

distributions of statistics like l,^.  and l,^,  + ...+£. 

We will now consider the case when A is unknown. Let H..: A. = A   Then 
nT 1 Tin •"•iicii 

H^can be decomposed as Q   H^^, Q   ",.,HI »"d    A^    H Motivated by the 
I K-i-i   1-K+i        i<j = k+l 

above decompositions, we propose the followino procedures. We accent H* 
p-1 ^  k 

against ^J [A >A^] if 
i=k+l ^ P 

(^-/y^^al (3.26) 
. ■     I, 

for i = k+l,...,p-i and reject it otherwise where 

'^(^k.l/^p)l^al!H;]= (l-«). (3.27) 

If H^ is rejected, we accept or reject the subhypothesis H* , accordinq as 

^•/^p ^ ^al , (3.28) 
for i=k+2,...,p-l. 

The hypothesis H* when tested against {j     (A > x-.J is accepted if 
i=k+l  '   1+1 
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^   . (^•/^•.l) 1 ^a2 (3.29) 

for i  = k+l,2,...,(p-l) and rejected otherwise where 

P[(^-/'^i+l) 1 c^2' ■•  = l<+1.2,...,p-l|H*] = (1-a). (3.30) 

P 
Similarly, the hypothesis H,   when tested against     O   [X-  > A.^J is accepted if 

i<j-k+l   ^        ^^^ 
and only if , 

ijr. < c ^ 
T     J —    a3 

for i  < j and i  = l<+l,...,p-l where 

P^^Vl/^)-^a3l^^k^ =  (!-)• (3.31) 

we can also use \+i/(-^k+l^-•-^^p^ ^^ ^ ^^^t statistic. Exact computations of 

the probability integrals associated with the above procedures are complicated 

and involve nuisance parameters except when k = 0. In this particular case, 

percentage points are available for a few special cases (see Krishnaiah (1980)), 

But, approximations to the critical values c ,, c o and c ^ can be derived 

for large samples. 
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4. DETECTION OF NUMBER OF SIGNALS USING 

INFORMATION THEORETIC CRITERIA 

In the preceding section, we discussed various procedures for testing 

the hypotheses on the number of signals. We will now discuss procedures for 

detection of the number of signals by using information theoretic criteria. 

When X = 1, the likelihood ratio test statistic L, for H, is given by 

(3.18). Now, let .,,.  ^ , 
G(k) = logL|^ 

and 
I(k,C^) = -  logL^ + C^v(k,p) (4.1) 

where v(k,p) = yk(2p-k+l)  denotes the number of free parameters and C  ' 

satisfies the following condition: 

(i) lim(C^/n) = 0 (4.2) 
n-»«> 

(ii)  lim(C^/loglogn)  = ^. ' (4.3) 
n->«> 

Then,   according to  FDC criterion we find q which satisfies 

I(q,C^)  - min{I(0,C^),...,I(p-l,C^)} (4.4) 

and use q as an estimate of q which is the number of signals present in the 

true model M  The strong consistency of q is proved below: 

THEOREM 4.1.  If S. ~Wp(n. ,z.), i-1,2, n = n^+n2 -> - and a^fc[a,b] d (0,1) 

with a,b being constants, then q is a strongly consistent estimate of q under 

the model ^n* • 

PROOF. It is known (see Zhao, Krishnaiah and Bai (1985)) that 

,..,.[ = 0(-Jliial5a!l) a.s. (4.5) 
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Using Taylor's expansion, we get 

log(a^+B^6.) - B^logs. - ^ a^e^(6.-l)2(l+o(l)) a.s. (4.6) 

for i > q. Here we used the fact that 

lim (S. = 1 a.s. for i > q. (4.7) 

With probability one for large n, we have min(q,T) = q so that, for large n, 

IG (q) - G (k)| - Odoglogn) = o(C ) 

and 

(4.8) 

(l(q,C^) - I(k,C^))/C^ = -(G(q) - G(l<)/C^ - (k-q) (2p-k-q+l) 

->-(k-q)(2p-k-q+l) 

when k > q. Thus with probability one, for large n. 

(4.9) 

I(q.C^) < I(k,C^) , if k > q. 

Since, with probability one, min(q,T) = q, for large n, we have 

(4.10) 

G. (q) - G (k)  = n    I    [log(a +3„6.)  - 3„log6.] 
i=k+l "    " ^ "        ^ 

(4.11) 

for   k < q.       Note that for i  < q, lim 6    = A    > 1, we see that there exists 
n-x« 

a constant p > 1 such that with probability one 

6^.   > y for i  = k+1,... ,q, 

for large n.    By the monotonicity of 

f(6)  = log(a^+B^5)  -  3^1og<S (4.12) 
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P(CD) = P[I(q,C^) - I(k,C ) < 0; k=0,l,...,(p-l); k^qjH ].       (4.20) 

It would be of interest to compare numerically the probability of correct 

detection of the criteria I(q,Cj^), AlC(q) and MDL(qj. 

We now discuss the problem of detection of the number of signals when A 

is unknown.  In this case, the logarithm of the LRT statistic for H* is given 

by (3.23). Now, let 

G*(k) - logL^ (4_2i) 

and assume that C^ satisfies the conditions (4.2) and 

(4.3). Then an estiamte of q, the true number of signals, is given by q where 

q = max{k: l<k<p-l, G*(k) - G*(k-1) > C } (4.22) 

and max(|) = 0 for convenience. 

Let M|^ denote the model under which H^  is true. We now prove the strong 

consistency of the above method. 

THE0REM_4^. If S. - Wp(n. ,x.), i =1,2, n > -, and a^6[a,b] c:(0,l) with 

a,b being constants, then, under the true model M , q is a strongly consistent 

estimate of q. 

PROOF. As pointed out earlier 

Sj - Ajl = 0(\j|l^^T^) a.s. (4.23) 

for j - 1,...,p. 

Note that being 6^ > 6^ > ... > 6 with probability one, we can see from 

(3.21) or (3.22) that \^^ > \^_^^  Q ^°^ ° - "^ - P"^' 

We assume that M is the true model, and k >^ q. As mentioned above. 
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■^j - 1| = O(s^loglogn) a.s. 

for j > q. Assume |5• - 1| ^ e^ for j > k:+ 1. Then 

. P"*" 1  1 I     -^ = p-k < L&-JiL___    (4 24) 
Vko(i-n) %  J=^"lVk0"Vj    "Vko^i^s)"^' 

and 1 - c^ £ X|^Q £ 1 + e^. Thus we have 

l\o " ^1 " °\'n'°9^°9") a.s.,k>q. (4.25) 

Using Taylor's expansion, we see that for k ^ q, 

P 

P 

= 0( loglogn)   a.s. 

If k > q, then from lim C^/ loglogn =  », we get 
n-K)o 

L*(k) - L*{k-1) = o(C^) a.s. (4.26) 

Thus, with probability one, we have for large n, 

L*(k) -L*(l<-1) < C^ for k > q , (4.27) 

which implies q = 0 if q = 0. Now we assume that 1^ k < q. We have 

G*(k) -G*(k-1) -  n{g(A\Q) - 9(^1^0) - «JogA\_^^Q - pJogS^ 

-Hlog(a^A^_^^Q+3^6^)}, ^^_2g^ 
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where 

g(x) = a (p-k)logx -      y    ldg(a„x+3 5.) 
j=lc+l "      " ^ 

It is easily seen that for xe(A.Q,A,  Q] , 

So we have 

Let y^   be the solution of the following equation: 

P        A. 
p - k + 1 =    y    —J , 

(4.29) 

(4.30) 

(4.31) 

From 

p - k + 1 JL 

J=^ Vk-l,O^Pn^j 

and lim 6. 
r>->oo   ^ 

Aj a.s., it follows that 

li fVi.o-^) 0   a.s, (4.32) 

Thus we have 

"^"■"s^Vk-i.o-'^^) - %^°g\-i.o - ^n^°g^k> 

a.s. 
n{1og(a^y^+3^A^) - ajogy^ - 3^1ogx^}{l + 0(1)} (4.33) 

Si nee 

y —^ AL   CX„A,+f 

A. 

j=k "n^-^n^j "     ^ j4+l "n^^t^n^j a„A.+B„A. 1 + P - k, 
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' ■ , • 1- 

it follows VJp -^ MQ < A|^ for some constant y  . 

Hence 

^ (4.34) 
log(a^p^+3^A^) - ajogp^ - BjogA^ = h(a). 

Note that h(a) is continuous for ae[a,b] where B = 1-a.    So there exists a 

c^tCajb] such that 

h(a^)   >  h(a^)   =  log(a^v^+p^^X^)   -  ajogy^  -   g^loqX^  >  0 (4.35) 

By (4.33)  -  (4.35), we see that with probability one for n large, 

n{log(a^A^_^^Q+3^6^)  - aJ-ogA\_^^Q - Bjog6^} (4.36) 

>   |nh(a^). ^     ^ 

From (4.28),(4.30),(4.36) and C^/n -> 0, it follows that with probability one 

for n large, 

L(k) - L(k-l) > MC^, k -  1,2,...,q (4.37) 

for any fixed M > 0. 

By (4.27) and (4.37) we see that with probability one for n large, 

q = q' ■  (4.38) 

and the theorem is proved. 
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5. MULTIVARIATE ONE-WAY RANDOM EFFECTS MODEL 

In this section, we discuss the relationship between drawing inference on i 

the rank of the covariance matrix of column effects in one-way multivariate 

random effects model and the problem of finding the number of signals discussed 

in the preceding sections. The one-way multivariate random effects model is 

given by 

X. . - v + a.  + e . . (5.1) 

for i = l,2,...,k j = l,2,...,m where y is the general mean vector, a. is the 

vector of random effects of i-th column and x. . denotes the j-th observation on 

i-th column and £ . is distributed as multivariate normal with mean vector 0 

and covariance matrix 7.^.    Also, a^. is distributed  independent of ^. . as 

multivariate normal with mean vector 0 and covariance matrix ii.    The covariance 

matrix of x^.^ is T.^^  where ):^ =    ^p + Y.^.     It is of interest to test the rank of 

^  is r.  If the rank of ip  is r, then there exists a full rank matrix B:(p-r)xp 

such that Bi|; ^  0. Testing the hypothesis that the rank is zero is equivalent 

to testing the hypothesis of no column effects. If ;|j is not of full rank, then 

we can take advantage of this knowledge in estimating ^p.    Anderson (1984,1985) 

and Schott and Saw (1984) have independently derived the LRT statistic for 

testing the hypothesis on the rank of i).    Now let S^  and S respectively denote 

the between groups and within group sums of squares and cross products matrices 

respectively. Then S^  and S^ are distributed independently as central Wishart 

matrices with (k-1) and (km-k) degrees of freedom respectively, E(S,) = (k-1) 

(x-^+mijj) and E(SJ= (km-k)E,-. 
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6„  DETECTION OF NUMBER OF SIGNALS WHEN 

EIGENVALUES OF Z^T'^"^ HAVE MULTIPLICITIES 

In Sections 3 and 4, we discussed the problem of detection of the number 

of signals under the assumption that the nonzero eigenvalues of the matrix AvA' 

are distinct.    But situations arise when it is unrealistic to make the above 

assumption.    In this section, we consider the problem of detecting the number 

of signals and finding the multiplicities of the eigenvalues of AvA'.    We will 

first discuss the problems of finding the rank of r when the underlying distri-i 

bution is real  multivariate normal. 
p 

For the interval [o,p], there exists I fc})= 2^'^ different integer 

partitions such as O-kg < k^ < ... < k^ = p, £ = 1,2,... ,p. We denote the 

set of all such partitions with K.    Let 

V...k/ \.   /I = ••• = \.   = c •, i = 1,2,...,£        (6.1) 

where c^ > ... > c^ are unknown constants and A.^ > A2 > ... > A are eigenvalues 
-1    . ^ 

of y.^7.-^   .  We will denote the corresponding parametric space and model with 

\        k 1 • • •  I 
■k 

k„ ^"^ "^k ...k    ''espectively.    We are interested in selecting the correct 

model  M using information theoretic criteria when we do not have any 
1 " *' '^r 

knowledge of q^,...,q^.    When H*        ^    is true, the log-likelihood function 
* 1'"  Z 

I  (e)  is given by 

li  (0)  = -  n^log|Ej   -  n2log|E2l   - n^trz'^S^ - n2trE2^S2. (6.2) 

At first we calculate Sup      2L*(e) 

^''®k ■   k 

Denote the eigenvalues of S^S^^ by 6^ > .„. > 6 . There exists two non- 

singular matrices R and R such that 
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Sj = RR' ,  ^2 = RAR' , 

S = RR',  S„ = RAR' , 

where A = diag(Aj,... ,A ) and A = diag(6^,... ,6 ). Without loss of generality. 

we assume that 6^ > ... > 6 > 0. Now, let R -^R - V.  Then 

2L (o) = - (n^+n2)loglRR'| - n2log(x^...Ap) + Lj(V ,A),   (6.3) 

where 

Lj(V ,A) = (n^+n2)log|V'V| - n^trV'V - n2tr(V'A'^VA).       (6.4) 

First we fix A = diag(A^,... ,Ap) where (6.1) is satisfied. For given A, 

we can now calculate Sup^ L^(V ,A). TO accomplish this, we take derivative of 

L^ with respect to matrix V and obtain the following optimizing equations: 

2(n^+n2)V~^ - 2n^V' - 2n2AV'A"^ = 0 

I.e., 

where 

«^VV . ,.;^AV'A-lv = Ip, (6.5) 

"n " "l/"' ^n " "2/"' " " "1 + "2- (6.6) 

Using the same argument as used to prove (3.8), we find 

VV(a I .3 A-^A) -  I , (6.7) 

and 

|VV|-|»„VV-M-^ = j^^j^. (6.8, 
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Also, we have by (6.5) 

.,-1, - n^trVV - n2tr(AV'A"'V)  = -  (n^+n^)?. (6.9) 

Now, using (6.3),  (6.4),  (6J8) and  (6.9), we get 

Sup 2L (e)= Sup 
I 

)€.(-) 
up n{- log|RR'|   - p + a„    V Ak.logc.    (6.10) 
>~>r„ "-ill 1   •••''£ 1=1 

I 
I        I  log(a   c. +B  6.)} 

i=l  jCK, "1        "  J 

where K.  = {k._^+l,  k._^+2,...,k.}.    Now, let  c.  's be chosen such that 

5. 
J 

^^^-   %C.  +3^6. 
Ak. , i  = 1,...,^, (6.11) 

Noticing that c.   > 6,     > 6 i - \.  > \.n - S-+1 ' then we get 

Sup 

K^,... ,k„ 

2L(G)  - n{- a^log|Sj  - 3^1og|S2|   - p 

(6.12) 

"■ iii jJ/V°9s-^^n^°g^j-iog(«nS-'Vj))>- 

Also, we have 

jW''''°"*-"n'°'l-^l'-V°3|S2l-P>- 
Sup 

(6.13) 
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Now, let 

L {kj,...,k^) - Sup      {2LtG)}- Sup    {2L16)1.        (6 14) 

Then, we get 

* - 
L (k^,...,k^) = nj I    (a^logc. +3jog5j-log(a^c. +e^6.))     (6.15) 

Now, let I 

G*(k^,...,k^) =L*(k^,...,k^) - £C^ (6.16) 

where C^ satisfies the following conditions: 

(i) lim(C^/n) = 0 
n-^» 

(ii) lini(C; /loglogn) = - (6.17) 

Then, we estimate (r.q^,... ,q^) with (r,q^ ,... ,q-) where 

G (q^,...,q-) = max        G*(k^,. .. ,k^) (6.18) 
I K-1 ,. . . , k n )£ K 

Where. = {(k^,... ,k^), k^ < k^ < ... < k^ = p, £ = 1,2,...,p}. 

We now prove the strong consistency of the above procedure. 

THEOREM 6A^   Let n^S^ and n^S^  be distributed independently as central 

Wishart matrices with n^ and u^  degrees of freedom respectively. Also, let 

E(S.) - ?:. (i = 1,2). Then (r,q^,... ,q-) defined by (6.16) is a strongly consis 

tent estimate of (r,qj,... ,q^) when n ->«>, a^^[a,b]c(0,l) with a and b geing 

constants and the true model M* 
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PROOF. Suppose that M 
U' 

is the true model and A- > .. >_ A are 

.-1 
the eigenvalues of ^2^:; . By the law of the iterated logarithm, we have 

S. -E. =oJ^^)    a.s. as n-.»,   " 

for i = 1,2. Thus, 

^1 ^2^1   ^1 ^2^1 " Q(NJ- n^ ) a.s. as n -^ 

By Lemma 3.2 in (Zhao, Krishnaiah and Bai (1985)), 

M^)    a.s ^- - s- 0(N as n -> 00 

for i = l,...,p. Suppose that (k    ,k„) ^(j* ,...,j ) Then 

Sup      21^0) > Sup 
OtO 

K-j ,. . . 5 Kp 
06O* 

2L1O), 

'1'' m 

so, we have 

(6.19) 

L (k^,...,k^) >L*(j^,...,j^). (6^20) 

Now we suppose that (k^,...,k^):3 (q^,...,q^). Then £ > r. Write 

i = ^qi-i+1. q^-_i+2,...,q.], Aq. = a. and v. = (6.-A.)/A.. Also, put u-   = 

2 i for i=l,2,,..,r. Assume (1-e ) c. < 6. < (l+e„)c. for a.ll J^K.. Then 

-1, 
^• 

«,c.c:^(l-e^)-1.3, ^--'i-nVVj ~ «n^i^;'(l^^n)"\   ^''''^ 

Since 
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1  -^L_ a.. 

we know that 

^i - c.I < e^ c. for i = l,...,r. 

Using (6.19) and (6.22), we have 

- =  (Ci-c.)/c. -0{^ loglogn ) a.s, 

(6.22) 

(6.23) 

as n ^ CO for i = l,...,r. By (6.15) and Taylor's expansion, we get 

0 < Ll:k-^,...,k^) - Ll;q^,...,q^) < - Llq^,...,q^) (6.24) 

= n    I       I   [log(l+a M.+B„v.) - a log(l+y ) - B„log(l+v.)] 
•  i=l jcK.      n 1 n j    n     i    n     j 

i=l IcK.  " ^  '' J     " ^  " J 

Now using (6.19) and (6.23), we have 

0 £ - L*(q^,...,q^) - O(loglogn) a.s. (6.25) 

as n -> CO. By (6.16) ,(6.17), (6.24) and (6.25), with probability one for 

large n, 

Gtq;^,...,q^) -G*(k^,...,k^) = L*(qp... ,q^) - L*(k^ ,... ,k^) 

+ U-r)C^ >  0. (6.26) 

Finally we suppose that (kp. ..,k^)  is a partition of [o,p] such that there 

exists at least one q^ satisfying k^._j < q,   < k.  for some i.    Define a new 
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partition (1,2,... ,q^-l,q^.i, q^.2,...,p) '= U,,... ,3^_,).    By the fact 

(j^"-->Jp_i) ^ (kj,...,k^) and (6.20), we have 

L*(qi,...,q^) -L:tk^,...,k^) >aqj,...,q^) -L^j^ j   ) 

Now, let N^ = {q^, q^^^}.  it is easy to see that 

(6.27) 

L (Ji.»..,jp_i) = n I    nog(a^A+B^6^.) - a^logA + 3^1og6 ]     (6.28) 

where 

6.. 
J ! 

jc-N^ a^A+3,6j 
(6.29) 

Define p^ such that 

1 
a„y^+3 A. 

jtN  n'-n "n J 
(6.30) 

By Tim 6 = A  a.s. for jeH.,  we have 
n->«) 0    J t n-^oo 

lim(A-y ) =  0 a.s, 
n-^ (6.31) 

By (6.31),c^ > c^^^, and the condition a^6[a,b]c::(0,l), there exists a constant 

(6.32) 

ij such that 
0 

By (6.29), (6.31) and (6.32), we get 

- L*(Ji....,jp_i) ^-^ n J^  [log(a^M^+3,Aj) - ajogy^ 

- 3^1ogAj] + o(n) 

- "'^^°9^ Vn^^ c^ ) - V°9Pn " ^^09 c^ 1 + o(n)  , 
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- "l^^oS^^nV^n ^t )  - %^°9^^o "  ^^°9 ^t ^ "^ °(n) (6.33) 

The function 

h(a)  = log(ap^+3c^)  - «Jogij^ -  ejog c^ ,  (3=l-a) (6.34) 

is positive and continuous forat[a,b]. So there exists a constant a£[a,b] such 

that '     • 

h(o'n)  > hCa^)  = "logCa^p^+p^ c^ ) - a^logy^ - ii^logc^   > 0. (6.35) 

By applying (6.33) - (6.35), we get, with probability one • 

* 1 
- L (Ji"--.Jp_i) ± 2"^(%) (6.36) 

for large n.     From (6.25) ,(6.27) ,(6.36)  and  lim C/n = 0, we know that, 
n-H» 

with probability one for large n, 

* 

S (qi,...,q^) -Glk^,...,k^) =L*(q^,...,q^) - L*(k^ ,... ,k^) + o(n) 

> ^ nh(«J + o(n) > 0. (6.37) 

From (6.26) and (6.37) it follows that, with probability one for large n, 

{r,q^,...,q^)  - ( r,q^ ,... ,q^), (6.33) 

which completes the proof of Theorem 6.1. 
* 

REMARK 6.1. L (kj,...,k^) can be regarded as a general test statistic (not necessarily 

LRT statistic) for testing the hypothesis H*    . Also, letn,S, and n^S^ be 

distributed as I  X x! and I  Y Y|. respectively where X,,...,X  and Y,,...,Y 
i=l~'~'    i=l~^~^ ~1    ~"j    ~1    -^2 
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are subject to the following conditions; 

^^^ h""'ln    ^"^^ "'•"'•^- ^"^ ^l"-"^n ^"^^ i.i.d. such that E(X^)=E(Yj)=0 

(b) (XT,...,X ) and (Y,,...,Y ) are independent or not 

(c) E(X^X^) = Y.^  and E(Y^Y^) = Eg are positive definite 

(d) E(XJX^)^ - CO and E(YJY^)^ < » 

vs.   ^ ^ 

Then,  ( r,q^,... ,qj:) is still  a   strongly comistent estimate of (r,q,,...,q ). 

REMARK 6.2.     If A    = c^ is  known, we can assume c„ = 1.     In this case, we 

redenote H* ,0* , M* .   , L .and G*{k,,... ,k,)  by 

the corresponding notations without stars.    Following the same lines as in the 

case of proof from (6.1) to  (6.10), we find that 

Sup 2L*(e)  = Sup n{-  loglRRl   + a      V bup 2L (e) = Sup n{- log RR   + a^    \ logA.  -    V log(a x.+g 6.)p} 
0(ki...y c^>...>c^_^>l " i.i        '      i^i    ''  " ^    ni'^' 

t-l l-\ 
n{-log|RR|   - P + a^  J Ak.logc.  -  J    J    ^og^Vi^Vi^ 

l^-*- T-l i-1 jtic. 

I    log(a^+p^6.)} , (6.39) 
JeK^ 

Define c^.  as  those defined in  (6.11)  and define 

T = max{i  < £-1, c.  > 1} " (6.40) 

If i _< T, then 

Sup (a^Ak.logc.-    I    log(a^c.+3^6.)) = 
C.>1 icic. S->^ J-i 

a^Ak.logc.  -   J    log(a^c.+3^6.) •   (6.41) 
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and the superium can be reached at c.  = c..   If i  > T, i.e., c  < 1, for c.  > 1 

we have 

^(a^Ak.logc.-    T    log(a^c.+B^6.)) 

<^(^VJ = 0, 
J-,-    -.C.+g^S.^ 

Hence 

Sup   (a^Ak.logc.-   _   ^   log(a^C.+e^6.))   =  -       I   1og(a +B   6.), 
C.>1 jtK. jeK. • 

and the superium is reached at c.  =1.    Noting that c,  > ...  > c    > 1, we obtain 

Sup 2L*(6)  = n{- a loglSJ   - 3 log|SJ   - p 

■      ""  ^\   .   I   («n^°9V^n^°9'5j-log(a^C.+3^6.)]  -   _   f    1og(a^+e^5.) 

Hence we get ' 

L(l<        k„) = n I        i [a 1ogc.+3_log6.  - log(a^c.+B„6.)] 
i=l jeK.    "        ^    "        ^ n 1    n 1 

I 
- n      I    log(a +3 6.) 

i=T+l n    n 1 

} (6.42) 

Now, let 

G(k^,...,k^)  = L(k^,...,k^) - Ic^ 

(6.43) 

(6.44) 

where c^ satisfies (6.17).    Then we estimate (r.q^,...,q^) with (r,q^,... ,q-), 

where 
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G(q;^,...,q^) = max        G(k^ ,... ,k^), (6.45) 
i K^ ,, . . ,K o J6.K 

where K  is the set defined below (6.18). Similarily as Theorem 6.1, we have 

THEOREM 6.2. Let n^S^, n^S^ be distributed independently as central Wishart 

matrices with n^ and n^ degrees of freedom respectively. Also, let ES. = >:;.(i=l,2) 

Then (r,q^,...,qp defined by (6.45) is a strongly consistent estimate of 

(r,q^,... ,q^), when n -> oc, a^e[a,b] cn(0,l) with a,b being constants and the true 

model M 
^1'--"r 

Since, with probability one, when large enough, T = r - 1 under the hypothesis 

H     ,   we find that Theorem 6.2 can be proved by the same argument as used 

in the proof of Theorem 6.1. So that we omit it here. 

REMARK 6.3. Remark 6.1 concerning Theorem 6.1 is also available to Theorem 6.2. 

REMARK 6.4. If n,S, and n^S^ are distributed independently as central complex 

Wishart matrices. Then the log-likelihood function L(o) is given by, up to an 

adding constant, 

L(o) = - n^logh:J - n2logh:2l - n^tr):^^S^ - n2tr);2^S2, 

In the arguments in Sections 3-6, we only need change the following notations 

* 
ij = RR , L^ =  RAR 

S^ = RR*   S^ = RAR* in (3.2) 

* 
where A denotes the transpose of the conjugate of the matrix A. 

L^(V',A) = (n^+n2)log|V*V| - n^trV*V - n^trA'^VAV* in (3.4) 

and Q being a Hermite matrix instead of an orthogonal matrix and rewrite 0' 
* 

as Q    in  (3.7) and  (3.8).    Finally we can get the same representations of the 
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log-likelihood ratio test statistic as given in (3.18), (3.23) ,(6.15) and 

(6.43). By the same way, we can prove the analogues to Theorem 4.1, 6.1 and 

6.2. 
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